Среднее квадратическое отклонение
Для оценки рассеяния c. в. вокруг ее среднего значения кроме дисперсии служат и другие характеристики. К их числу относится среднее квадратическое отклонение.
Опр. Средним квадратическим отклонением сл. вел. $X$ называется корень из дисперсии. $ \delta ( X )=\sqrt { D( X ) } . $ Среднее квадратическое отклонение имеет размерность случайной величины.
Пример. Пусть С. В. $\xi $ задана законом распределения
$$ \begin{array} { c|lcr } \xi & 2 & 3 & 10 \\ \hline P & 0.1 & 0.4 & 0.5 \\ \end{array} $$
Найти $\delta ( \xi )$.
Решение.
- Найдем $M( \xi )=2\cdot 0,1+3\cdot 0,4+10\cdot 0,5=0,2+0,12+5=6,4$
- Найдем $M( { \xi ^2 } )=2^2\cdot 0,1+3^2\cdot 0,4+10^2\cdot 0,5=4\cdot 0,1+9\cdot 0,4+100\cdot 0,5= 0,4+3,6+50=54$
- Найдем $D=M( { \xi ^2 } )-( { M( \xi ) } )^2=54-( { 6,4 } )^2=13,04$, и $\delta ( \xi )=\sqrt { 13,04 } \approx 3,61$
Далее:
Механические и физические приложения поверхностного интеграла первого рода
Формула Грина
Односторонние и двусторонние поверхности. Ориентация поверхности
Примеры применения цилиндрических и сферических координат
Теорема о предполных классах
Полином Жегалкина. Пример.
Теорема об алгоритме распознавания полноты
Переход от двойного интеграла к повторному. Изменение порядка интегрирования. Переход к полярным координатам
Вычисление криволинейного интеграла второго рода. Примеры.
Несобственные интегралы по неограниченной области
Определение двойного интеграла
Класс Te . Теорема о замкнутости Te
Класс $T_1$. Теорема о замкнутости класса $T_1$
Свойства криволинейного интеграла второго рода
Теорема Стокса
Огравление $\Rightarrow $
Комментарии ()