Оценка отклонения теоретического распределения от нормального. Асимметрия и эксцесс
При изучении распределений, отличных от нормального, возникает необходимость количественно оценить это различие. С этой целью вводят две специальные характеристики - асимметрию и эксцесс.
Если распределение случайной величины симметрично относительно математического ожидания, то все центральные моменты нечетного порядка равны нулю.
Это объясняется тем, что в силу симметричности для каждого $+( { X-M( X ) } )$ найдется $-( { X-M( X ) } )$ с одинаковой вероятностью.
Если центральный момент нечетного порядка не равен 0, то говорят об асимметричности распределения, чем больше момент, тем больше асимметрия
Поэтому в качестве характеристики асимметрии разумнее всего взять какой-нибудь нечетный момент т.к. 1-го порядка всегда 0, то возьмем 3-го порядка.
Опр. Коэффициентом асимметрии $A$ называется величина $A=\frac { M_3 } { \sigma _x^3 } $, где $\sigma _x$ - среднее квадратическое отклонение. $M_3-$ центральный момент 3-го порядка.
Рассмотрим два случая**
1) Если $A>0$ - это говорит о влиянии на центральный момент 3-го порядка $M_3$ отрицательных отклонений и форма кривой принимает вид: { пологая слева } кривая сама асимметрична
2) Если $A>0$ - преобладает влияние положительных отклонений и кривая полога справа.
Опр Эксцессом $E$ называется величина $ E=M_4 /\sigma _x^4 -3 $
Можно показать, что для наиболее распространённого в природе нормального распределения $M_4 /\sigma _x^4 =3$ т.е. эксцесс равен 0. Если $E>0$ { эксцесс $>0$ } , то кривая более острая, если $E>0$, то более пологая.
Далее:
Специальные векторные поля
Логические операции над высказываниями
Формула Грина
Определение двойного интеграла
Нормальные формы
Поток жидкости через поверхность
Дифференциальные характеристики векторного поля
Вычисление криволинейного интеграла второго рода в случае выполнения условия независимости от формы
Теорема о заведомо полныx системаx
Формула Гаусса - Остроградского
Класс M. Теорема о замкнутости класса M
Поток векторного поля через поверхность
Замена переменных в двойном интеграле. Двойной интеграл в полярных координатах
Логические следствия
Огравление $\Rightarrow $
Комментарии ()