Cайты для работы и коммуникаций
Лучше один раз увидеть, чем 100 раз услышать!
Практически 100%-ая копия полюбившегося многим инстаграм, идеально подойдет для портфолио, презентации работ своим клиентам или как отклик на понравившуюся вакансию. Молодой ресурс, но администраторы оперативно реагируют на предложения и вопросы.
Независимые события. Теорема умножения
Опр Событие А называется независимым от события В, если вероятность появления события А не зависит от того, произошло событие В или нет.
Свойство независимости взаимно.
Теорема Если случайные события независимы, то вероятность их совмещения есть
$ P( { AB } )=P( A )\cdot P( B ) $
Опр Несколько событий называются попарно-независимыми, если каждые два из них независимы.
Замечание Если события А и В - независимы, то независимы так же события $\overline A$ и $B$ , $A$ и $\overline B$, $\overline A$ и $\overline B $.
Опр Группа событий - $A_1 A_2 \ldots A_n $ называется независимой в совокупности, если любые события этой группы не зависят от произведения любого числа оставшихся $P( { A_1 ,A_2 ,\ldots A_n } )=P( { A_1 } )\cdot P( { A_2 } )\cdot \ldots \cdot P( { A_n } )$
Замечание Понятие о независимости и о несовместности - близки, но это не одно и тоже. Несовместные события $A\cap B=\emptyset $будут независимы, если $P( A )\ne 0$ и $P( B )\ne 0$
Пример: Вероятность того, что студент сдаст первый экзамен, равна 0,9, второй - 0,9, третий - 0.8. Найти вероятность того, что студент сдаст все три экзамена.
Решение. Введем события:
$A_1 =$ { студент сдаст 1 - й экзамен } ,
$A_2 =$ { студент сдаст 2 - й экзамен } ,
$A_3 =$ { студент сдаст 3 - й экзамен } ,
$B =$ { студент сдаст все три экзамена } .
Учитывая, что события $A_1 ,A_2 ,A_3 $ независимы получим $B=A_1 \cdot A_2 \cdot A_3 $. Вероятность того, что студент сдаст все три экзамена, найдем как вероятность независимых событий $ P(B)=P(A_1 \cdot A_2 \cdot A_3 )=P(A_1 )\cdot P(A_2 )\cdot P(A_3 )=0,9\cdot 0,9\cdot 0,8=0,648. $
Далее:
Теорема о заведомо полныx системаx
Вычисление площади поверхности
Теорема об аналоге СДНФ в Pk
Вычисление криволинейного интеграла второго рода. Примеры.
Определение криволинейного интеграла второго рода
Класс $T_0$. Теорема о замкнутости класса $T_0$
Свойства тройного интеграла
Гармонические поля
Вычисление площадей плоских областей
Вычисление тройного интеграла. Теорема о переходе от тройного интеграла к повторному
Функции 2-значной логики. Лемма о числе функций. Элементарные функции 1-ой и 2-х переменных
Формулы. Равенство функций и эквивалентность формул. Основные эквивалентности
Векторное поле
СДНФ. Теорема о представлении в виде СДНФ. Построение СДНФ по таблице
Свойства криволинейного интеграла второго рода
Огравление $\Rightarrow $
Комментарии ()