Эмпирическая функция распределения
Функцией распределения выборки или эмпирической функцией распределения называют функцию $F^\ast ( x )$, определяющую для каждого значения $X$ относительную частоту события $X<x$ $ F^\ast ( x )=\frac { n_\ast } { n } $
$n-$ объём выборки
$n_\ast -$ число наблюдений, при которых наблюдалось значение признака меньшее x.
Функцию распределения генеральной совокупности называют теоретической функцией распределения. Разница между ними следующая: теоретическая функция распределения $F(x)$ определяет вероятность события $X<x$, а эмпирическая - относительную частоту этого события.
$F^\ast ( x ) -$ обладает теми же свойствами, что и $F(x)$
- неубывающая $F^\ast ( x )=\left\{ { { \begin{array} { \c } { 0, x\leqslant x_1 } \\ { 1, x>x_n } \\ \end{array} } }\right.$
- $0\leqslant F^\ast ( x )\leqslant 1$
Эмпирическая функция распределения выборки служит для оценки теоретической функции распределения.
Далее:
Определение двойного интеграла
Криволинейный интеграл первого рода
Вычисление поверхностного интеграла первого рода
Класс $T_1$. Теорема о замкнутости класса $T_1$
Теорема Стокса
Логические следствия
Гармонические поля
Поверхностный интеграл первого рода и его свойства
Нормальные формы
Равносильные формулы алгебры высказываний
Введение
Определение тройного интеграла. Теорема существования тройного интеграла
Специальные векторные поля
Вычисление криволинейного интеграла второго рода. Примеры.
Огравление $\Rightarrow $
Комментарии ()