Инвариантное определение дивергенции
В разделе Дивергенция векторного поля мы определили дивергенцию как выражение в определённой системе координат :
$div\bar { a } (M) = \left( { \frac { \partial P } { \partial x } +\frac { \partial Q } { \partial y } +\frac { \partial R } { \partial z } }\right)(M)$
Теорема Остроградского позволяет понять смысл дивергенции поля в точке $\mathbf { \textit { M } } $ как объективного атрибута векторного поля без использования координатной системы. Пусть $\sigma $ - замкнутая поверхность, окружающая точку $\mathbf { \textit { M } } $, $\mathbf { \textit { V } } $ - тело, заключенное внутри $\sigma $, $\bar { n } $ - вектор единичной внешней нормали к $\sigma $. Тогда $\prod =\iint\limits_\sigma { \bar { a } (M)\cdot \bar { n } (M)d\sigma } =\iiint\limits_V { div\bar { a } \cdot dv } $.
По теореме о среднем для тройного интеграла существует точка $M_1 \in V$ такая, что $\prod =\iiint\limits_V { div\bar { a } \cdot dv } =div\bar { a } (M_1 )\cdot V$. Следовательно, $div\bar { a } (M_1 )=\frac { \prod } { V } $.
Отношение значения некоторой физической величины к объёму принято называть средней плотностью этой величины в объёме; если объём стягивается к точке $\mathbf { \textit { M } } $, предел средней плотности называется локальным значением плотности в точке $\mathbf { \textit { M } } $. Таким образом, мы можем трактовать $div\bar { a } (M_1 )=\frac { \prod } { V } $ как среднюю плотность потока в объёме $\mathbf { \textit { V } } $.
Будем теперь стягивать $\sigma $ к точке $\mathbf { \textit { M } } $, при этом и $\mathbf { \textit { V } } $ стягивается к точке $\mathbf { \textit { M } } , M_1 \to M$ и, вследствие непрерывности $div\bar { a } , div\bar { a } (M_1 )\to div\bar { a } (M)$. Поэтому $div\bar { a } (M)=\mathop { \lim } \limits_ { \sigma \to M } \frac { \prod } { V } =\mathop { \lim } \limits_ { \sigma \to M } \frac { \mathop { { \iint } } \limits_\sigma { \bar { a } \bar { n } d\sigma } } { V } \mathbf { } $ будет равна плотности потока в точке $\mathbf { \textit { M } } $ и так как плотность потока определяется независимо от выбора какой-либо системы координат, то дивергенция векторного поля инвариантна относительно выбора координатной системы.
Используем теперь гидродинамическую интерпретацию поля для выяснения физического смысла дивергенции. Пусть $\bar { a } (\mathbf { \textit { M } } )$ - стационарное поле скоростей несжимаемой жидкости. В каком случае поток $\prod =\iint\limits_\sigma { \bar { a } (M)\cdot \bar { n } (M)d\sigma } =\iiint\limits_V { div\bar { a } \cdot dv } \mathbf { } $ через замкнутую поверхность $\sigma $ может быть отличен от нуля, т.е. в каком случае из $\mathbf { \textit { V } } $ вытекает больше жидкости, чем втекает { при $\prod>0$ } или наоборот { при $\prod<0$ } ?
Ясно, что $\prod>0$ может быть только в том случае, если в $\mathbf { \textit { V } } $ появляется дополнительная жидкость, т.е. в $\mathbf { \textit { V } } $имеются источники поля. $\prod<0$ может быть только в том случае, если в $\mathbf { \textit { V } } $ исчезает часть жидкости, т.е. в $\mathbf { \textit { V } } $ имеются стоки поля. Поэтому $div\bar { a } (M)$ как плотность потока в точке $\mathbf { \textit { M } } $ определяет силу источника { при $div\bar { a } (M)>0$ } или стока { при $div\bar { a } (M)<0$ } в точке $\mathbf { \textit { M } } $.
По аналогии с полем скоростей жидкости считают, что дивергенция определяет силу источников и стоков поля в любом поле $\bar { a } (\mathbf { \textit { M } } )$.
Далее:
Вычисление поверхностного интеграла первого рода
Критерий полноты {теорема Поста о функциональной полноте}
Определение тройного интеграла. Теорема существования тройного интеграла
Теорема Остроградского
Равносильные формулы алгебры высказываний
Частные случаи векторных полей
Класс $T_0$. Теорема о замкнутости класса $T_0$
Определение криволинейного интеграла второго рода
Функции k-значной логики. Элементарные функции. Лемма об аналоге правила де Моргана
Замыкание. Свойства замыкания. Теорема о сведении к заведомо полной системе
Выражение площади плоской области через криволинейный интеграл
Гармонические поля
Соленоидальное векторное поле
Поток векторного поля через поверхность
Логические следствия
Огравление $\Rightarrow $
Комментарии ()