Переход от двойного интеграла к повторному. Изменение порядка интегрирования. Переход к полярным координатам

Смысл этих задач - научиться быстро определять параметры $a,\;b,\;\varphi _1 (x),\;\varphi _2 (x),\;c,\;d,\;\psi _1 (y),\;\psi _2 (y)$ { в декартовых координатах } и $\varphi _0 ,\;\varphi _2 ,\;r_1 (\varphi ),\;r_2 (\varphi )$ { в полярных координатах } , необходимые для перехода от двойного интеграла к повторному.

Примеры:

Пример 1

Пусть область $D=\left[{ x\leqslant 0,\;y\leqslant 0,\;x^2+y^2\leqslant 4 }\right]\cup \left[{ x\geqslant 0,\;x^2+y^2\leqslant -2y }\right]$. Представить двойной интеграл по области $\mathbf { \textit { D } } $ в виде повторных. Перейти к полярным координатам. perekhod-ot-dvoinogo-integrala-k-povtornomu-0 Решение:

Область изображена на рисунке. Для левой части $D-2\leqslant x\leqslant 0;\quad -\sqrt { 4-x^2 } \leqslant y\leqslant 0$; для правой - $0\leqslant x\leqslant 1,\;-1-\sqrt { 1-x^2 } \leqslant y\leqslant -1+\sqrt { 1-x^2 } $ уравнение правой полуокружности после выделения полных квадратов принимает вид $x^2+(y+1)^2=1$, поэтому

$$ I=\iint\limits_D { f(x,y)dxdy } =\int\limits_ { -2 } ^0 { dx\int\limits_ { -\sqrt { 4-x^2 } } ^0 { f(x,y)dy } } +\int\limits_0^1 { dx\int\limits_ { -1-\sqrt { 1-x^2 } } ^ { -1+\sqrt { 1-x^2 } } { f(x,y)dy } } . $$

$\mathbf { \textit { D } } $ можно также oписать неравенствами $-2\leqslant y\leqslant 0,\;-\sqrt { 4-y^2 } \leqslant x\leqslant \sqrt { -2y-y^2 } $, поэтому $I=\iint\limits_D { f(x,y)dxdy } =\int\limits_ { -2 } ^0 { dy\int\limits_ { -\sqrt { 4-y^2 } } ^ { \sqrt { -2y-y^2 } } { f(x,y)dx } } $. В полярных координатах уравнение левой четверти окружности имеет вид $r=2$ для $\pi \leqslant \varphi \leqslant 3\pi /2$ { можно взять и отрезок $-\pi \leqslant \varphi \leqslant -\pi /2$ } , правой полуокружности $r=-2\sin \varphi $ для $3\pi /2\leqslant \varphi \leqslant 2\pi $ { можно взять и отрезок $-\pi /2\leqslant \varphi \leqslant 0$ } , поэтому $I=\iint\limits_D { f(x,y)dxdy } =\iint\limits_ { D_ { r,\varphi } } { f(r\cos \varphi ,r\sin \varphi )rdrd\varphi } =\int\limits_\pi ^ { 3\pi /2 } { d\varphi \int\limits_0^2 { f(r\cos \varphi ,r\sin \varphi )rdr } } + \\ + \int\limits_ { 3\pi /2 } ^ { 2\pi } { d\varphi \int\limits_0^ { -2\sin \varphi } { f(r\cos \varphi ,r\sin \varphi )rdr } } $

Пример 2

Изменить порядок интегрирования, перейти к полярным координатам. perekhod-ot-dvoinogo-integrala-k-povtornomu-1 $I=\int\limits_ { -6 } ^0 { dx\int\limits_0^ { 2x+12 } { f(x,y)dy } } +\int\limits_0^6 { dx\int\limits_ { 2x } ^ { 2x+12 } { f(x,y)dy } } +\int\limits_6^ { 12 } { dx\int\limits_ { 2x } ^ { 24 } { f(x,y)dy } } $

Решение:

Область $\mathbf { \textit { D } } $ - объединение трёх подобластей: $D=\left[{ -6\leqslant x\leqslant 0,\;0\leqslant y\leqslant 2x+12 }\right]\cup \left[{ 0\leqslant x\leqslant 6,\;2x\leqslant y\leqslant 2x+12 }\right]\cup\left[{ 6\leqslant x\leqslant 12,\;2x\leqslant y\leqslant 24 }\right]\cup $

На рисунке изображена область и приведены уравнения прямых и обратных функций для линий, ограничивающих её. $\mathbf { \textit { D } } $ можно представить в виде $D=\left[{ 0\leqslant y\leqslant 24,\;y/2-6\leqslant x\leqslant y/2 }\right]$, поэтому $I=\int\limits_0^ { 24 } { dy\int\limits_ { y/2-6 } ^ { y/2 } { f(x,y)dx } } $. В полярных координатах $\mathbf { \textit { D } } $ представляется как объединение двух треугольников $\mathbf { \textit { OCB } } $и $\mathbf { \textit { OBA } } $. Уравнение прямой $\mathbf { \textit { ОС } } $: $\varphi =arctg2$ { можно получить и формально, перейдя к полярным координатам в её уравнении: $y=2x\Rightarrow \quad r\sin \varphi =2r\cos \varphi \Rightarrow tg\varphi =2$ } , прямой $\mathbf { \textit { ОВ } } $: $\varphi =arctg4$, прямой $\mathbf { \textit { СВ } } $: $y=24\Rightarrow r\sin \varphi =24\Rightarrow \quad r=24/\sin \varphi $, прямой $\mathbf { \textit { ОА } } $: $\varphi =\pi $, прямой $\mathbf { \textit { АВ } } $: $y=2x+12\Rightarrow r\sin \varphi =2r\cos \varphi +12\Rightarrow \quad r=\frac { 12 } { \sin \varphi -2\cos \varphi } $.

В результате $I=\iint\limits_D { f(x,y)dxdy } =\iint\limits_ { D_ { r,\varphi } } { f(r\cos \varphi ,r\sin \varphi )rdrd\varphi } =\\ \quad =\int\limits_ { arctg2 } ^ { arctg4 } { d\varphi \int\limits_0^ { 24/\sin \varphi } { f(r\cos \varphi ,r\sin \varphi )rdr } } +\int\limits_ { arctg4 } ^\pi { d\varphi \int\limits_0^ { 12/(\sin \varphi -2\cos \varphi ) } { f(r\cos \varphi ,r\sin \varphi )rdr } } $.

Пример 3

Вычислить двойной интеграл $\iint\limits_ { D } { \left( 6x { { y } ^ { 2 } } -12 { { x } ^ { 2 } } y \right)dxdy } $, где область $D$ – квадрат со сторонами $x=0$, $x=1$, $y=2$, $y=3$. В повторном интеграле внутренний интеграл вначале вычислить по переменной $y$, а внешний – по $x$. Вычислить этот же интеграл, изменив порядок интегрирования.

Решение:

Вначале изобразим область интегрирования. Запишем заданный двойной интеграл через повторные: $\iint\limits_ { D } { \left( 6x { { y } ^ { 2 } } -12 { { x } ^ { 2 } } y \right)dxdy } =\int\limits_ { 0 } ^ { 1 } { dx } \int\limits_ { 2 } ^ { 3 } { \left( 6x { { y } ^ { 2 } } -12 { { x } ^ { 2 } } y \right)dy } $.

perekhod-ot-dvoinogo-integrala-k-povtornomu-2

Внутреннее { первое } интегрирование будем выполнять по переменной $y$ { при этом считаем, что $x$ – константа } , а внешнее { второе } – по переменной $x$:

$$\iint\limits_ { D } { \left( 6x { { y } ^ { 2 } } -12 { { x } ^ { 2 } } y \right)dxdy } =\int\limits_ { 0 } ^ { 1 } { dx } \int\limits_ { 2 } ^ { 3 } { \left( 6x { { y } ^ { 2 } } -12 { { x } ^ { 2 } } y \right)dy } =$$

$$=\int\limits_ { 0 } ^ { 1 } { dx } \left[ 6x\int\limits_ { 2 } ^ { 3 } { { { y } ^ { 2 } } dy } -12 { { x } ^ { 2 } } \int\limits_ { 2 } ^ { 3 } { ydy }\right]=\int\limits_ { 0 } ^ { 1 } { \left( 6x\cdot \left. \frac { { { y } ^ { 3 } } } { 3 }\right|_ { 2 } ^ { 3 } -12 { { x } ^ { 2 } } \cdot \left. \frac { { { y } ^ { 2 } } } { 2 }\right|_ { 2 } ^ { 3 }\right)dx } =$$

$$=\int\limits_ { 0 } ^ { 1 } { \left[ 2x\left( { { 3 } ^ { 3 } } - { { 2 } ^ { 3 } }\right)-6 { { x } ^ { 2 } } \left( { { 3 } ^ { 2 } } - { { 2 } ^ { 2 } }\right) \right]dx } =\int\limits_ { 0 } ^ { 1 } { \left( 38x-30 { { x } ^ { 2 } }\right)dx } =$$

$$=\int\limits_ { 0 } ^ { 1 } { 38xdx } -\int\limits_ { 0 } ^ { 1 } { 30 { { x } ^ { 2 } } dx } =38\int\limits_ { 0 } ^ { 1 } { xdx } -30\int\limits_ { 0 } ^ { 1 } { { { x } ^ { 2 } } dx } =38\cdot \left. \frac { { { x } ^ { 2 } } } { 2 }\right|_ { 0 } ^ { 1 } -30\cdot \left. \frac { { { x } ^ { 3 } } } { 3 }\right|_ { 0 } ^ { 1 } =$$

$$=19\left( { { 1 } ^ { 2 } } - { { 0 } ^ { 2 } }\right)-10\left( { { 1 } ^ { 3 } } - { { 0 } ^ { 3 } }\right)=19-10=9$$

Вычислим теперь заданный по условию двойной интеграл, сменив порядок интегрирования: внутреннее интегрирование будем проводить по переменной $x$ { считая, что $y$ есть постоянной } , а внешнее – по переменной $y$:

$$\iint\limits_ { D } { \left( 6x { { y } ^ { 2 } } -12 { { x } ^ { 2 } } y \right)dxdy } =\int\limits_ { 2 } ^ { 3 } { dy } \int\limits_ { 0 } ^ { 1 } { \left( 6x { { y } ^ { 2 } } -12 { { x } ^ { 2 } } y \right)dx } =$$

$$=\int\limits_ { 2 } ^ { 3 } { \left[ 6 { { y } ^ { 2 } } \int\limits_ { 0 } ^ { 1 } { xdx } -12y\int\limits_ { 0 } ^ { 1 } { { { x } ^ { 2 } } dx }\right]dy } =\int\limits_ { 2 } ^ { 3 } { \left[ 6 { { y } ^ { 2 } } \cdot \left. \frac { { { x } ^ { 2 } } } { 2 }\right|_ { 0 } ^ { 1 } -12y\cdot \left. \frac { { { x } ^ { 3 } } } { 3 }\right|_ { 0 } ^ { 1 }\right]dy } =$$

$$=\int\limits_ { 2 } ^ { 3 } { \left( 3 { { y } ^ { 2 } } -4y \right)dy } =\left. \left( 3\cdot \frac { { { y } ^ { 3 } } } { 3 } -4\cdot \frac { { { y } ^ { 2 } } } { 2 }\right) \right|_ { 2 } ^ { 3 } =27-8-2\left( 9-4 \right)=19-10=9$$

Пример 4

Вычислить двойной интеграл $\iint\limits_ { D } { \left( { { x } ^ { 2 } } +2y \right)dxdy } $, если область $D$ ограничена линиями $y= { { x } ^ { 2 } } $, $x=2$, $y=2x-1$. Вычислить этот же интеграл, изменив порядок интегрирования.

Решение:

Строим заданную область $D$. Вначале внутреннее интегрирование будем проводить по переменной $y$, а внешнее – по $x$: $$\iint\limits_ { D } { \left( { { x } ^ { 2 } } +2y \right)dxdy } =\int\limits_ { a } ^ { b } { dx } \int\limits_ { { { \phi } _ { 1 } } \left( x \right) } ^ { { { \phi } _ { 2 } } \left( x \right) } { \left( { { x } ^ { 2 } } +2y \right)dy } $$

perekhod-ot-dvoinogo-integrala-k-povtornomu-3

Контур области $D$ пересекается любой прямой, параллельной оси ординат, в двух точках.

Найдем пределы интегрирования. Переменная $x$ изменяется от абсциссы точки $A$ к абсциссе точек $B$ и $C$. Координаты точки $A$ найдем как координаты точки пересечения графиков функций $y= { { x } ^ { 2 } } $ и $y=2x-1$:

$$\left[ \begin { matrix } y= { { x } ^ { 2 } } , \\ y=2x-1 \\ \end { matrix }\right.\Rightarrow { { x } ^ { 2 } } =2x-1\Rightarrow { { x } ^ { 2 } } -2x+1=0\Rightarrow { { \left( x-1 \right) } ^ { 2 } } =0\Rightarrow { { x } _ { A } } =1$$

Так как точки $B$ и $C$ лежать на прямой $x=2$, то $ { { x } _ { B } } = { { x } _ { C } } =2$. Итак, $1\le x\le 2$. Далее на отрезке $\left[ 1;\ 2 \right]$ выбираем произвольную точку $x$, через нее проводим прямую, параллельную оси $Oy$, и на этой прямой рассмотрим отрезок $KL$, принадлежащий области $D$.

Область $D$ ограничена снизу прямой $y=2x-1$, а сверху – веткой параболы $y= { { x } ^ { 2 } } $. Переменная $y$ изменяется в заданной области $D$ от ее значения $2x-1$ на нижней части контура $ABC$ до ее значения $ { { x } ^ { 2 } } $ на верхней части этого контура.

Замечание. Уравнения линий, ограничивающих контур, должны быть разрешены относительно той переменной, относительно которой находится внутренний интеграл.

Таким образом, $2x-1\le y\le { { x } ^ { 2 } } $, а тогда область $D$ задается следующими неравенствами:

$$D:\left[ \begin { matrix } 1\le x\le 2, \\ 2x-1\le y\le { { x } ^ { 2 } } . \\ \end { matrix }\right.$$

Итак,

$$\iint\limits_ { D } { \left( { { x } ^ { 2 } } +2y \right)dxdy } =\int\limits_ { 1 } ^ { 2 } { dx } \int\limits_ { 2x-1 } ^ { { { x } ^ { 2 } } } { \left( { { x } ^ { 2 } } +2y \right)dy } =\int\limits_ { 1 } ^ { 2 } { dx } \left. \left( { { x } ^ { 2 } } y+ { { y } ^ { 2 } }\right) \right|_ { 2x-1 } ^ { { { x } ^ { 2 } } } =$$

$$=\int\limits_ { 1 } ^ { 2 } { \left[ { { x } ^ { 2 } } \cdot { { x } ^ { 2 } } + { { \left( { { x } ^ { 2 } }\right) } ^ { 2 } } -\left( { { x } ^ { 2 } } \cdot \left( 2x-1 \right)+ { { \left( 2x-1 \right) } ^ { 2 } }\right) \right]dx } =$$

$$=\int\limits_ { 1 } ^ { 2 } { \left( 2 { { x } ^ { 4 } } -2 { { x } ^ { 3 } } -3 { { x } ^ { 2 } } +4x-1 \right)dx } =\left. \left( \frac { 2 { { x } ^ { 5 } } } { 5 } -\frac { { { x } ^ { 4 } } } { 2 } - { { x } ^ { 3 } } +2 { { x } ^ { 2 } } -x \right) \right|_ { 1 } ^ { 2 } =$$

$$=\frac { 64 } { 5 } -8-8+8-2-\left( \frac { 2 } { 5 } -\frac { 1 } { 2 } -1+2-1 \right)=\frac { 29 } { 10 } $$

Вычислим теперь рассматриваемый двойной интеграл, изменив порядок интегрирования: внутреннее интегрирование будем проводить по переменной $x$, а внешнее – по $y$. То есть, перейдя к повторным интегралам, получим:

$$\iint\limits_ { D } { \left( { { x } ^ { 2 } } +2y \right)dxdy } =\int\limits_ { c } ^ { d } { dy } \int\limits_ { { { \psi } _ { 1 } } \left( y \right) } ^ { { { \psi } _ { 2 } } \left( y \right) } { \left( { { x } ^ { 2 } } +2y \right)dx } $$ perekhod-ot-dvoinogo-integrala-k-povtornomu-4 Из рисунка в области $D$ видно, что левая граница контура области – одна линия { положительная ветка параболы $y= { { x } ^ { 2 } } $), а его правая часть состоит из двух линий $AB$ { отрезок прямой $y=2x-1$) и $BC$ { отрезок прямой $x=2$), то есть задается разными уравнениями. В этом случае область $D$ нужно разбить на части так, чтобы каждая из них справа была ограничена только одной линией. В данном случае такими частями будут $ { { D } _ { 1 } } -ABF$ и $ { { D } _ { 2 } } -BCF$. Заданная область $D$ будет суммой областей $ { { D } _ { 1 } } $ и $ { { D } _ { 2 } } $. Тогда искомый интеграл будет равен сумме интегралов по каждой из областей:

$$\iint\limits_ { D } { \left( { { x } ^ { 2 } } +2y \right)dxdy } =\iint\limits_ { { { D } _ { 1 } } } { \left( { { x } ^ { 2 } } +2y \right)dxdy } +\iint\limits_ { { { D } _ { 2 } } } { \left( { { x } ^ { 2 } } +2y \right)dxdy } $$

perekhod-ot-dvoinogo-integrala-k-povtornomu-5

Поскольку в данном случае внутреннее интегрирование проводится по переменной $x$, то уравнения ограничивающих линий нужно разрешить относительно этой переменной:

$$AB:y=2x-1\Rightarrow x=\frac { y+1 } { 2 } ; \qquad AC:y= { { x } ^ { 2 } } \Rightarrow x=\sqrt { y } $$

Найдем пределы интегрирования для каждой из областей. В области $ { { D } _ { 1 } } $ переменная $y$ изменяется от ординаты точки $A$ до ординат точек $B$ и $F$. Точка $A$ принадлежит параболе $y= { { x } ^ { 2 } } $ и выше было найдено, что абсцисса этой точки $ { { x } _ { A } } =1$, тогда $ { { y } _ { A } } = { { 1 } ^ { 2 } } =1$. Точка $B$ – точка пересечения двух прямых $x=2$ и $y=2x-1$, а тогда $ { { y } _ { B } } =2\cdot 2-1=3$. Итак имеем, что $1\le y\le 3$. Переменная $x$ в области $ { { D } _ { 1 } } $ изменяется от ветки параболы $x=\sqrt { y } $ до прямой $x=\frac { y+1 } { 2 } $, то есть $ { { D } _ { 1 } } :\left[ \begin { matrix } 1\le y\le 3, \\ \sqrt { y } \le x\le \frac { y+1 } { 2 } . \\ \end { matrix }\right.$ Аналогично для области $ { { D } _ { 2 } } $ находим, что $ { { D } _ { 2 } } :\left[ \begin { matrix } 3\le y\le 4, \\ \sqrt { y } \le x\le 2. \\ \end { matrix }\right.$

Таким образом,

$$\iint\limits_ { D } { \left( { { x } ^ { 2 } } +2y \right)dxdy } =\int\limits_ { 1 } ^ { 3 } { dy } \int\limits_ { \sqrt { y } } ^ { \frac { y+1 } { 2 } } { \left( { { x } ^ { 2 } } +2y \right)dx } +\int\limits_ { 3 } ^ { 4 } { dy } \int\limits_ { \sqrt { y } } ^ { 2 } { \left( { { x } ^ { 2 } } +2y \right)dx } =$$

$$=\int\limits_ { 1 } ^ { 3 } { \left. \left( \frac { { { x } ^ { 3 } } } { 3 } +2xy \right) \right|_ { \sqrt { y } } ^ { \frac { y+1 } { 2 } } dy } +\int\limits_ { 3 } ^ { 4 } { \left. \left( \frac { { { x } ^ { 3 } } } { 3 } +2xy \right) \right|_ { \sqrt { y } } ^ { 2 } dy } =$$

$$=\int\limits_ { 1 } ^ { 3 } { \left( \frac { { { \left( y+1 \right) } ^ { 3 } } } { 24 } + { { y } ^ { 2 } } +y-\frac { 7 } { 3 } { { y } ^ { \frac { 3 } { 2 } } }\right)dy } +\int\limits_ { 3 } ^ { 4 } { \left( \frac { 8 } { 3 } +4y-\frac { 7 } { 3 } { { y } ^ { \frac { 3 } { 2 } } }\right)dy } =$$

$$=\left. \left[ \frac { { { \left( y+1 \right) } ^ { 4 } } } { 96 } +\frac { { { y } ^ { 3 } } } { 3 } +\frac { { { y } ^ { 2 } } } { 2 } -\frac { 14 } { 15 } \sqrt { { { y } ^ { 5 } } }\right] \right|_ { 1 } ^ { 3 } +\left. \left[ \frac { 8y } { 3 } +2 { { y } ^ { 2 } } -\frac { 14 } { 15 } \sqrt { { { y } ^ { 5 } } }\right] \right|_ { 3 } ^ { 4 } =$$

$$=\left[ \frac { 8 } { 3 } +9+\frac { 9 } { 2 } -\frac { 42\sqrt { 3 } } { 5 } -\left( \frac { 1 } { 6 } +\frac { 1 } { 3 } +\frac { 1 } { 2 } -\frac { 14 } { 15 }\right) \right]+$$

$$+\left[ \frac { 32 } { 3 } +32-\frac { 448 } { 15 } -\left( 8+18-\frac { 42\sqrt { 3 } } { 5 }\right) \right]=\frac { 29 } { 10 } $$

Пример 5

Вычислить двойной интеграл (\iint\limits_R { \left( { { x^2 } + { y^2 } }\right)dydx } ,) преобразовав его в полярные координаты. Область интегрирования (R) представляет собой сектор (0 \le \theta \le \large\frac { \pi } { 2 } \normalsize) круга радиусом (r = \sqrt 3.)

Решение: Область (R) в полярных координатах описывается множеством (R = \left[{ \left( { r,\theta }\right)|\;0 \le r \le \sqrt 3 ,0 \le \theta \le \large\frac { \pi } { 2 } \normalsize }\right]) (рисунок (4)). Применяя формулу $ { \iint\limits_R { f\left( { x,y }\right)dxdy } } = { \int\limits_\alpha ^\beta { \int\limits_ { a } ^ { b } { f\left( { r\cos \theta ,r\sin \theta }\right)rdrd\theta } } , } $ получаем $ { \iint\limits_R { \left( { { x^2 } + { y^2 } }\right)dydx } } = { \int\limits_0^ { \frac { \pi } { 2 } } { \int\limits_0^ { \sqrt 3 } { { r^2 } \left( { { { \cos } ^2 } \theta + { { \sin } ^2 } \theta }\right)rdrd\theta } } } = { \int\limits_0^ { \frac { \pi } { 2 } } { d\theta } \int\limits_0^ { \sqrt 3 } { { r^3 } dr } } = { \left. \theta \right|_0^ { \frac { \pi } { 2 } } \cdot \left. { \left( { \frac { { { r^4 } } } { 4 } }\right) }\right|_0^ { \sqrt 3 } } = { \frac { \pi } { 2 } \cdot \frac { 9 } { 4 } = \frac { { 9\pi } } { 8 } . } $

Пример 6

Вычислить интеграл (\iint\limits_R { xydydx } ,) в котором область интегрирования (R) представляет собой кольцо, ограниченное окружностями ( { x^2 } + { y^2 } = 1) и ( { x^2 } + { y^2 } = 5.)

Решение:

В полярных координатах область интегрирования (R) является полярным прямоугольником: $R = \left( { \left( { r,\theta }\right)|\;1 \le r \le \sqrt 5 ,0 \le \theta \le 2\pi }\right).$

perekhod-ot-dvoinogo-integrala-k-povtornomu-6

Тогда, используя формулу $ { \iint\limits_R { f\left( { x,y }\right)dxdy } } = { \int\limits_\alpha ^\beta { \int\limits_ { a } ^ { b } { f\left( { r\cos \theta ,r\sin \theta }\right)rdrd\theta } } , } $ находим значение интеграла $ { \iint\limits_R { xydydx } } = { \int\limits_0^ { 2\pi } { \int\limits_1^ { \sqrt 5 } { r\cos \theta r\sin \theta rdrd\theta } } } = { \int\limits_0^ { 2\pi } { \sin \theta \cos \theta d\theta } \int\limits_1^ { \sqrt 5 } { { r^3 } dr } } = { \frac { 1 } { 2 } \int\limits_0^ { 2\pi } { \sin 2\theta d\theta } \int\limits_1^ { \sqrt 5 } { { r^3 } dr } } = { \frac { 1 } { 2 } \left. { \left( { - \frac { { \cos 2\theta } } { 2 } }\right) }\right|_0^ { 2\pi } \cdot \left. { \left( { \frac { { { r^4 } } } { 4 } }\right) }\right|_1^ { \sqrt 5 } } = \\ = { \frac { 1 } { 4 } \left( { - \cos 4\pi + \cos 0 }\right) \cdot \frac { 1 } { 4 } \left( { 25 - 1 }\right) } = { \frac { 1 } { 4 } \left( { - 1 + 1 }\right) \cdot 6 = 0. } $

Пример 7

Найти интеграл (\iint\limits_R { \sin \theta drd\theta } ,) где область интегрирования (R) ограничена кардиоидой (r = 1 + \cos \theta ).

perekhod-ot-dvoinogo-integrala-k-povtornomu-7

Решение:

Данный интеграл уже записан в полярных координатах. Выражая его через повторный интеграл, получаем: $\require { cancel } { \iint\limits_R { \sin \theta drd\theta } } = { \int\limits_0^ { 2\pi } { \int\limits_0^ { 1 + \cos \theta } { \sin \theta drd\theta } } } = { \int\limits_0^ { 2\pi } { \left[ { \int\limits_0^ { 1 + \cos \theta } { dr } }\right]\sin \theta d\theta } } = { \int\limits_0^ { 2\pi } { \left[ { \left. r \right|_0^ { 1 + \cos \theta } }\right]\sin \theta d\theta } } = { \int\limits_0^ { 2\pi } { \left( { 1 + \cos\theta }\right)\sin \theta d\theta } } = \\ = { \int\limits_0^ { 2\pi } { \left( { \sin \theta + \cos\theta \sin \theta }\right)d\theta } } = { \int\limits_0^ { 2\pi } { \sin \theta d\theta } + \int\limits_0^ { 2\pi } { \frac { { \sin 2\theta } } { 2 } d\theta } } = { \left. { \left( { - \cos \theta }\right) }\right|_0^ { 2\pi } + \frac { 1 } { 2 } \left. { \left( { - \frac { { \cos 2\theta } } { 2 } }\right) }\right|_0^ { 2\pi } } = { - \cos 2\pi + \cos 0 - \frac { 1 } { 4 } \cos 4\pi + \frac { 1 } { 4 } \cos 0 } = \\ = { -\cancel { 1 } + \cancel { 1 } - \cancel { \frac { 1 } { 4 } } + \cancel { \frac { 1 } { 4 } } = 0. } $

Пример 8

Вычислить интеграл (\iint\limits_R { \left( { { x^2 } + { y^2 } }\right)dxdy } ) в круге ( { x^2 } + { y^2 } = 2x.)

Решение: Область интегрирования (R) показана на рисунке:

perekhod-ot-dvoinogo-integrala-k-povtornomu-8

Преобразуем уравнение окружности следующим образом: $ { { x^2 } + { y^2 } = 2x, } \;\; { \Rightarrow { x^2 } - 2x + 1 + { y^2 } = 1, } \;\; { \Rightarrow { \left( { x - 1 }\right)^2 } + { y^2 } = 1. } $ Подставляя (x = r\cos \theta ,) (y = r\sin \theta ,) найдем уравнение окружности в полярных координатах. $ { { x^2 } + { y^2 } = 2x, } \;\; { \Rightarrow { r^2 } { \cos ^2 } \theta + { r^2 } { \sin^2 } \theta = 2r\cos \theta , } \;\; { \Rightarrow { r^2 } \left( { { { \cos } ^2 } \theta + { \sin^2 } \theta }\right) = 2r\cos \theta , } \;\; { \Rightarrow r = 2\cos \theta . } $ Образ (S) области интегрирования (R) показан на рисунке:

perekhod-ot-dvoinogo-integrala-k-povtornomu-9

После перехода к полярным координатам вычисляем двойной интеграл. $ { \iint\limits_R { \left( { { x^2 } + { y^2 } }\right)dxdy } } = { \iint\limits_S { \left( { { r^2 } { { \cos } ^2 } \theta + { r^2 } { \sin^2 } \theta }\right)rdrd\theta } } = { \iint\limits_S { { r^3 } drd\theta } } = { \int\limits_ { - \large\frac { \pi } { 2 } \normalsize } ^ { \large\frac { \pi } { 2 } \normalsize } { \left[ { \int\limits_0^ { 2\cos \theta } { { r^3 } dr } }\right]d\theta } } = { 4\int\limits_ { - \large\frac { \pi } { 2 } \normalsize } ^ { \large\frac { \pi } { 2 } \normalsize } { \left[ { \left. { \left( { \frac { { { r^4 } } } { 4 } }\right) }\right|_0^ { 2\cos \theta } }\right]d\theta } } = { 4\int\limits_ { - \large\frac { \pi } { 2 } \normalsize } ^ { \large\frac { \pi } { 2 } \normalsize } { { { \cos } ^4 } \theta d\theta } } = \\ = { 4\int\limits_ { - \large\frac { \pi } { 2 } \normalsize } ^ { \large\frac { \pi } { 2 } \normalsize } { { { \left( { \frac { { 1 + \cos 2\theta } } { 2 } }\right) } ^2 } d\theta } } = { \int\limits_ { - \large\frac { \pi } { 2 } \normalsize } ^ { \large\frac { \pi } { 2 } \normalsize } { \left( { 1 + 2\cos 2\theta + { { \cos } ^2 } 2\theta }\right)d\theta } } = { \int\limits_ { - \large\frac { \pi } { 2 } \normalsize } ^ { \large\frac { \pi } { 2 } \normalsize } { \left( { 1 + 2\cos 2\theta + \frac { { 1 + \cos 4\theta } } { 2 } }\right)d\theta } } = { \int\limits_ { - \large\frac { \pi } { 2 } \normalsize } ^ { \large\frac { \pi } { 2 } \normalsize } { \left( { \frac { 3 } { 2 } + 2\cos 2\theta + \frac { 1 } { 2 } \cos 4\theta }\right)d\theta } } = \\ = { \left. { \left( { \frac { 3 } { 2 } \theta + \sin 2\theta + \frac { 1 } { 8 } \sin 4\theta }\right) }\right|_ { - \large\frac { \pi } { 2 } \normalsize } ^ { \large\frac { \pi } { 2 } \normalsize } } = { \left( { \frac { 3 } { 2 } \cdot \frac { \pi } { 2 } + \sin \pi + \frac { 1 } { 8 } \sin 2\pi }\right) - \left( { - \frac { 3 } { 2 } \cdot \frac { \pi } { 2 } - \sin \pi - \frac { 1 } { 8 } \sin 2\pi }\right) } = { \frac { { 3\pi } } { 2 } . } $

Пример 9

Вычислить двойной интеграл (\iint\limits_R { \sin \sqrt { { x^2 } + { y^2 } } dxdy } ) посредством преобразования в полярные координаты. Область интегрирования (R) представляет собой круг ( { x^2 } + { y^2 } \le { \pi ^2 } .)

Решение:

Область интегрирования (R) представлена на рисунке: perekhod-ot-dvoinogo-integrala-k-povtornomu-10

Образ (S) данной области описывается множеством (\left[{ S = \left( { r,\theta }\right)|\;0 \le r \le \pi ,0 \le \theta \le 2\pi }\right]) и показан на рисунке:

perekhod-ot-dvoinogo-integrala-k-povtornomu-11

Запишем исходный двойной интеграл в полярных координатах. $ { I = \iint\limits_R { \sin \sqrt { { x^2 } + { y^2 } } dxdy } } = { \iint\limits_S { \sin \sqrt { { r^2 } { { \cos } ^2 } \theta + { r^2 } { \sin^2 } \theta } rdrd\theta } } = { \iint\limits_S { r\sin rdrd\theta } } = { \int\limits_0^ { 2\pi } { d\theta } \int\limits_0^\pi { r\sin rdr } } = { 2\pi \int\limits_0^\pi { r\sin rdr } . } $ Вычислим последний интеграл с помощью интегрирования по частям: $ { \int\limits_a^b { udv } } = { \left. { \left( { uv }\right) }\right|_a^b - \int\limits_a^b { vdu } . } $ Пусть (u = r,) (dv = \sin rdr.) Тогда (du = dr,\;\;v = \int { \sin rdr } = - \cos r). Следовательно, $ { I = 2\pi \int\limits_0^\pi { r\sin rdr } } = { 2\pi \left[ { \left. { \left( { - r\cos r }\right) }\right|_0^\pi - \int\limits_0^\pi { \left( { - \cos r }\right)dr } }\right] } = { 2\pi \left[ { \left. { \left( { - r\cos r }\right) }\right|_0^\pi + \int\limits_0^\pi { \cos rdr } }\right] } = \\ = { 2\pi \left[ { \left. { \left( { - r\cos r }\right) }\right|_0^\pi + \left. { \left( { \sin r }\right) }\right|_0^\pi }\right] } = { 2\pi \left. { \left( { \sin r - r\cos r }\right) }\right|_0^\pi } = { 2\pi \left[ { \left( { \sin \pi - \pi \cos \pi }\right) - \left( { \sin 0 - 0 \cdot \cos 0 }\right) }\right] } = { 2\pi \cdot \pi = 2 { \pi ^2 } . } $

Далее:

СДНФ. Теорема о представлении в виде СДНФ. Построение СДНФ по таблице

Функции k-значной логики. Элементарные функции. Лемма об аналоге правила де Моргана

Определение тройного интеграла. Теорема существования тройного интеграла

Вычисление криволинейного интеграла первого рода. Плоский случай

Лемма о построении множества $[F]_{x1,x2}$

Поток жидкости через поверхность

Вычисление криволинейного интеграла второго рода. Примеры.

Вычисление криволинейного интеграла первого рода. Примеры

Вычисление двойного интеграла. Двукратный интеграл

Частные случаи векторных полей

Специальные векторные поля

Переход от двойного интеграла к повторному. Изменение порядка интегрирования. Переход к полярным координатам

Криволинейный интеграл первого рода

Класс $S$. Теорема о замкнyтости класса $S$

Теорема о полныx системаx в Pk

Огравление $\Rightarrow $