пояса, то каждый его элемент перекрывается накладками с эквивалентной площадью (рис. 8.7, в).

8.7.2. Расчет узлов

В. Каков подход к расчету узлов?
Оп. Точный расчет узлов тяжелых ферм является весьма сложной задачей даже при использовании современных ЭВМ. В узле происходит расчет на прочность. Так как размеры сечения стержней в пределах узла не изменяют, габариты фасонки определяются размещением швов или болтов, то единственный размер, который подлежит определению,— это толщина фасонок. В фасонках из-за концентрации напряжений сравнительно рано появляются пластические деформации, поэтому точный расчет можно выполнить методами, использующими теорию пластичности.

В основном это численные методы, базирующиеся либо на методе конечного элемента, либо на методе конечных разностей, включающие итерационные процедуры, связанные с переходом отдельных элементов (участков) в пластическое состояние. Такие расчеты весьма трудоемки, требуют больших затрат машинного времени, поэтому прибегают к упрощенному подходу. Узел рассматривают как континуальную систему, стержни отображают, заменяя их воздействие сосредоточенными силами, а в нужных случаях и изгибающими моментами. Напряжения определяются методами сопротивления материалов.

В. Как рассчитать фасонку в зоне приспособления раскоса?
Оп. Разрушение фасонок может произойти по нескольким площадкам, в частности по ab6'a' и ab6'ab' (рис. 8.7, в).

Записываются соответствующие условия прочности:

\[D_2 \leq (A_{n,ab} + A_{n,a'b'}) R_{y1c} + A_{n,66} R_{y1c}, \quad (8.4) \]

\[D_2 \leq 2A_{n,66} R_{y1c} + (A_{n,b2} + A_{n,66}) R_{y1c}, (8.4') \]

Поскольку габариты фасонки определены после размещения болтов, из уравнений (8.4) и (8.4') определяются необходимые толщины фасонок.

В. Как произвести расчет фасонок на участках их примыкания к поясе?
Оп. Таких характерных сечений два — 1—1 и 2—2. В сечении 1—1 действуют две силы \(N_x \) и \(N_y \):

11*
\[N_x = N_1 - D_1 \cos \alpha_1; \quad N_y = D_1 \sin \alpha_1. \]

Сила \(N_x \) направлена по оси стержня, центр тяжести сечения 1—1 (рис. 8.7, ε) смещен на расстояние \(e_1 \), следовательно, имеется эксцентричное приложение силы. Уравнение прочности для точки «ε» в этом сечении будет
\[
\frac{(N_x/A_{n,1-1} - N_1 e_1/W_{n,1-1,1}c)}{(R_y W_{n,1-1,1}c)} \leq 1. \quad (8.5)
\]
\[
N_y/(A_{n,2-2} R_{yc}) \leq 1. \quad (8.5')
\]
Если фасонка в точке «ε» сжата, то нужно ее проверять на местную устойчивость.

В сечении 2—2 (рис. 8.7, δ) действует усилие \(\Delta N = N_1 - N_2 \), которое приложено с эксцентрикситетом \(e_2 \) и вызывает изгиб и срез фасонок.

Отсюда
\[
\Delta N e_2/(W_{n,2-2,1} R_{yc}) \leq 1. \quad (8.6)
\]
\[
\Delta N/(A_{n,2-2} R_{yc}) \leq 1. \quad (8.6')
\]
Из найденных по условиям (8.4), (8.4'), (8.5), (8.5'), (8.6) и (8.6') толщина фасонок выбирается максимальная, округляется до целой с запасом в соответствии с ГОСТ на листовую сталь.

8.8. Особенности ферм из алюминиевых сплавов

В. Каковы основные особенности ферм из алюминиевых сплавов?

От. Они такие же, как в балках и в колоннах.

Из-за пониженного \(E \) приходится увеличивать высоту ферм, чтобы обеспечить жесткость. С другой стороны, из-за высокой стоимости сплавов следует обеспечить экономию и стремиться к оптимальным размерам, в частности высоты. Уместно применять жесткие неразрезные схемы, причем в зоне опор можно применять стальные стержни. В сжатых стержнях для обеспечения устойчивости выгодно применять замкнутые сечения, гнутые профили из тонкого листа.