зникают лишь от жесткости сопряжений, как в рамных системах. Поэтому крайне желательно обеспечить центрирование стержней. Совершенно ясно, что абсолютное центрирование обеспечить невозможно в связи с ограничениями, диктуемыми требованиями технологии изготовления. В некоторых случаях надо сознательно идти на расцентровку, опираясь на соответствующие расчеты.

В. Как центрируются стержни ферм?
От. Прежде всего геометрические оси стержней в сварных фермах совмещаются с осами по центру тяжести сечений. Для облегчения изготовления разрешается округлять последние до 5 мм.

При наличии болтовых соединений центрирование осуществляется по рискам, расположение которых определяется возможность размещения гайки. При изменении сечений стержней часто возникает необходимость расцентровки, так как наружные полки сечений симметричны в одной плоскости (рис. 8.6, а). Обычно расстояние \(e = 0,5(e_1 + e_2) \). Если расцентровка \(\Delta e_1 \Delta e_2 > 0,015n_1(h_2) \), то необходимо ее учитывать при проверках прочности и устойчивости.

8.6.2. Классификация узлов

В. Какова классификация узлов?
От. Узлы можно классифицировать по ряду признаков.

Во-первых, по наличию или отсутствию в них соединительных элементов-фасонок. Соответственно применяются узлы с фасонками и бесфасонные узлы.

Во-вторых, по наличию или отсутствию примыкающих элементов — прогонов, связей и других.

В-третьих, заводские и монтажные. Последние отличаются полным разъемом примыкающих групп стержней.

В-четвертых, по наличию или отсутствию существенной расцентровки стержней.

Фасонка как соединительный элемент была порождена клепкой (или болтами). Без фасонки невозможно было объединить стержни в узле. Но фасонка несла с собой ряд недостатков.

1. На фасонки уходит до 18...22% металла.
2. Удельная трудоемкость изготовления фасонок бы-
ше, чем стержней, т. е. на их долю приходится 25...30% всех трудозатрат.

3. Из-за тяжелых условий работы фасонок, главным образом на изгиб, из плоскости при кантовке фермы в процессе изготовления и монтажа, возникновения значительных сварочных напряжений в них появляются трещины, особенно при низких температурах.

В первые десятилетия применения сварных соединений по существу не внесли изменения в конструкцию узла с фасонкой. И только по мере развития сварки появилась возможность непосредственного сопряжения стержней. Помимо исчезновения указанных недостатков, появляются дополнительные преимущества. Уменьшается в два, а иногда и больше раза объем сварки, увеличивается устойчивость стержней на монтаже за счет повышения жесткости на кручение и упругого опирания сжатого пояса из плоскости на раскосы и стойки и другие.

8.6.3. Узлы с фасонками

B. Какова конструкция узлов с фасонками?

От. Типичный узел с фасонкой и стержнями из парных уголков представлен на рис. 8.6, б. На геометрические оси фермы как бы «надеваются» стержни. В узле, как уже указывалось, оси пересекаются в одной точке — центре узла. Чтобы не допускать образования трещин в фасонках, в зонах примыкания элементов решетки к поясу должно быть выбрано достаточное расстояние (с≥6 t₀ — 20 мм), при котором не сковываются пластические деформации и резко снижены сварочные напряжения. Но в то же время стержень как-то должен быть защемлен из плоскости (с≤80 мм). В тех же целях между торцами стыкуемых элементов пояса, перекрыываемых накладками, следует предусматривать зазор не менее 50 мм.

Далее наносятся габариты швов, определенные расчетом. Швы заводятся на торцы уголков на 20 мм, чтобы уменьшить концентрацию напряжений в конце шва. Пояса привариваются к фасонке на всем протяжении непрерывными швами. Габариты фасонок устанавливаются по концам швов.

B. Как выбирается очертание фасонок?

От. Желательно, чтобы фасонки были в виде прямоугольников либо трапеций. На ножницах или газом удобно отрезать полосу, а уже затем из нее нарезать