Закон больших чисел. Неравенство Чебышева

Закон больших чисел

При многократном повторении испытаний, массовые случайные явления могут проявляться с определёнными закономерностями. Эти закономерности обладают свойством устойчивости, суть которого состоит в том, что действие отдельной случайной величины почти не влияет на среднее значение большого числа подобных величин.

Для практики важно знать условия}, в результате которых действие многих случайных величин приводит к результату почти не зависимому от случая. Эти условия или эту зависимость между случайностью и закономерностью устанавливают предельные теоремы вероятностей.

Под законом больших чисел не следует понимать какой-то один общий закон, связанный с большими числами. Закон больших чисел - это обобщённое название нескольких теорем из которых следует, что при неограниченном увеличении числа испытаний, среднее значение этих величин стремится к некоторым постоянным числам.

По смыслу эти теоремы можно разбить на две группы. Одна группа - закон больших чисел {теоремы Чебышева, Бернулли}, другая - центральная предельная теорема {теорема Ляпунова}

Для доказательства этих теорем потребуется неравенство Чебышева.

Неравенство Чебышева

Неравенство Чебышева справедливо для дискретных и непрерывных случайных величин. Пусть у нас есть дискретная случайная величина, заданная рядом распределения.

$ \begin{array}{l|l|l|l|l|l} X & X_1 & X_2 & X_3 & \cdots & X_n \\ \hline P & P_1 & P_2 & P_3 & \cdots & P_n \end{array} $

Требуется оценить вероятность того, что отклонение случайной величины от её математического ожидания не превышает по абсолютной величине положительного числа $\xi$.

Теорема {неравенство Чебышева}. Для произвольной случайной величины X с математическим ожиданием a=M(X) и дисперсией $\sigma ^2=D( x )$, для любого $\xi >0$ справедливо равенство \begin{equation} \label{eq2} P( {\left| {x-a} \right|>\xi } )\leqslant \frac{\sigma ^2}{\xi ^2} \qquad (2) \end{equation}

\begin{equation} \label{eq3} P( {\left| {x-a} \right|\leqslant \xi } )\geqslant 1-\frac{\sigma ^2}{\xi ^2} \qquad (3) \end{equation}

Из неравенства Чебышева следует - чем меньше $D(x)$, тем меньше вероятность отклонения. Неравенство Чебышева применимо для любых случайных величин. В форме {1} оно устанавливает верхнюю границу, а в форме {3} - нижнюю границу вероятности рассматриваемого события.

Запишем неравенство Чебышева в форме {3} для случайной величины Х имеющей биномиальный закон распределения с математическим ожиданием $а=M{X}=np$ и дисперсией $D(X)=npq$.

$ P( {\left| {x-np} \right|\leqslant \xi } )\geqslant 1-\frac{npq}{\xi ^2} $

В основном неравенство Чебышева имеет теоретическое значение для теорем.

Пример. Средний расход воды на ферме составляет 1000л. в день, а среднее квадратическое отклонение этой случайной величины не превышает 200л. Оценить вероятность того, что расход воды на ферме в любой выбранный день не превзойдет 2000л.

Решение. Пусть $X$ - расход воды на ферме. По условию $M(x)=1000$. Дисперсия $D(x)=\sigma ^2\leqslant 200^2$. Так как границы интервала $0\leqslant X\leqslant 2000$ симметричны относительно математического ожидания $M(x)=1000$, то для оценки вероятности искомого события применим неравенство Чебышева:

$P(X\leqslant 2000)=P(0\leqslant X\leqslant 2000)=P( {\left| {X-1000} \right|\leqslant 1000} )\geqslant 1-\frac{200^2}{1000^2}=0,96$, т.е. не менее, чем 0,96.