Основные формулы теории вероятности

№№

п/п

Понятия,
обозначения

Содержание, формула

1

Множество

Множество $A-$ совокупность каких-либо объектов $a$, называемых элементами множества: $a\in A$

2

Дополнение $\overline A $ 
{ не $A$ }

$\overline A $ содержит все элементы, не принадлежащие $A$

3

Равенство
множеств $A=B$

Два множества $A$ и $B$ равны между собой, если они состоят из одних и тех же элементов

4

Объединение { сумма } множеств $C=A+B$

Множество $C$ состоит из всех элементов, принадлежащих или множеству $A$, или множеству $B$ или и $A$ и $B$ одновременно

5

Пересечение
{ произведение }
множеств $C=A\cdot B$

Множество $C$ состоит из элементов, принадлежащих одновременно и множеству $A$ и множеству $B$

6

Разность двух
множеств $C=A-B$

$C$ состоит из элементов множества $A$, которые не являются элементами множества $B$

7

Эквивалентные
множества

Два множества называются эквивалентными, если между ними установлено взаимно-однозначное соответствие.

8

Счетные
множества

Бесконечные множества, эквивалентные множеству натуральных чисел $\mathbb { N } $

9

Перестановки. Число
перестановок

Соединения, отличающиеся только порядком элементов, называются перестановками. Число перестановок из $n$ элементов $P_n =n!$, где

$n!=1\cdot 2\cdot 3\cdot 4\cdot \ldots \cdot n$

$0!=1$ 

10

Размещения.
Число размещений

Соединения из $n$ различных элементов по $m$, отличающихся друг от друга составом элементов либо их порядком, называются размещениями. Число размещений из $n$ по $m$

$A_n^m =\frac { n! } { (n-m)! } $ 

11

Сочетания.
Число сочетаний

Соединения из $n$ различных элементов по $m$, отличающихся друг от друга хотя бы одним элементом, называются сочетаниями. Число сочетаний из $n$ по $m$

$C_n^m =\frac { n! } { (n-m)!m! } $

$C_n^m =C_n^ { n-m } ;$

$C_n^0 =1; C_ { n+1 } ^ { m+1 } =C_n^m +C_n^ { m+1 } ;$ 

$C_n^0 +C_n^1 +C_n^2 +\ldots +C_n^ { n-1 } +C_n^n =2^n$

12

Стохастический эксперимент

Это опыт { испытание } , результат которого заранее не определен

13

Достоверное
событие

Результат, который обязательно наступает при осуществлении данного комплекса условий { опыта, эксперимента } называется достоверным событием

14

Случайное
событие

Это событие, которое может произойти, а может и не произойти в данном испытании

15

Невозможное
событие

Это событие, которое не может произойти при данном комплексе условий

16

Относительная частота события $A$

Отношение $\nu (A)=\frac { m } { n } $ числа экспериментов $m$, завершившихся событием $A$, к общему числу $n$ проведенных экспериментов

17

Статистическое определение
вероятности

Если при неограниченном увеличении числа экспериментов относительная частота события $\nu (A)$ стремится к некоторому фиксированному числу, то событие $A$ стохастически устойчиво и это число $p(A)$ называют вероятностью события $A$

18

Определение
вероятности в классической
схеме

$P(A)=\frac { m } { n } $, где $m$ – число исходов стохастического эксперимента, благоприятствующих наступлению события $A$, $n$ – общее число всех равновозможных исходов

19

Вероятность
суммы
{ объединения } , двух событий $A$ и $B$

$P(A+B)=P(A)+P(B)-P(AB)$

20

Вероятность
произведения двух зависимых
событий $A$ и $B$

$P(AB)=P(A)\cdot P(B/A)=P(B)\cdot P(A\vert B)$,

где $P(B\vert A)$ – условная вероятность события $B$ при условии, что событие $A$ с ненулевой вероятностью произошло

21

Независимые
события $A$ и $B$

Это такие события, для которых $P(B\vert A)=P(B)$ и $P(A\vert B)=P(A)$.

Следовательно, $P(AB)=P(A)\cdot P(B)$ 

22

Схема Бернулли

Стохастический эксперимент состоит из последовательности $n$ независимых и одинаковых испытаний, в каждом из которых может произойти событие $A$ или событие, ему противоположное $\overline A $  с вероятностями соответственно равными $p$ и $q=1-p$

23

Формула Бернулли

Вероятность того, что в серии из $n$ испытаний событие $A$ появится ровно $m$ раз $P_n (m)=C_n^m \cdot p^m\cdot q^ { n-m } $ 

Вероятность того, что при $n$ испытаниях $A$ появляется не менее $m_1 $ и не более $m_2 $  раз вычисляется по формуле:

$P_n (m_1 \leqslant m\leqslant m_2 )=\sum\limits_ { m=m_1 } ^ { m_2 } { C_n^m \cdot p^m\cdot q^ { n-m } } $

24

Формула Пуассона

При достаточно большом $n$ и малом $p$, если $a=np\lt 10\rightarrow P_n (m)\approx \frac { a^m } { m! } e^ { -a } $  { таблица 1 }

$P_n (m\leqslant k)\approx e^ { -a } \sum\limits_ { m=0 } ^k { \frac { a^m } { m! } } $  { таблица 2)

25

Локальная формула Муавра-Лапласа

При достаточно большом $n$ и не слишком малых $p$ и $q$

$P_n (m)\approx \frac { 1 } { \sqrt { npq } } \phi (x)$, где $\varphi (x)=\frac { 1 } { \sqrt { 2\pi } } e^ { \frac { -x^2 } { 2 } } $ и $x=\frac { m-np } { \sqrt { npq } } $; $\phi (-x)=\phi (x)$  { таблица 3)

26

Интегральная
формула
Муавра – Лапласа

$P_n (m_1 \leqslant m\leqslant m_2 )=\Phi (x_2 )-\Phi (x_1 )$,

где $x_1 =\frac { m_1 -np } { \sqrt { npq } } $; $x_2 =\frac { m_2 -np } { \sqrt { npq } } $; $\Phi (x)=\frac { 1 } { \sqrt { 2\pi } } \int\limits_0^x { e^ { \frac { -t^2 } { 2 } } } dt$; $\Phi (-x)=-\Phi (x)$  { таблица 4 }

27

Понятие
случайной
величины

Случайной величиной называют переменную величину, которая принимает числовые значения в зависимости от исходов испытания случайным образом.

28

Понятие
дискретной
случайной
величины { ДСВ $X$ }

ДСВ $X$ – случайная величина, принимающая различные значения, которые можно записать в виде конечной или бесконечной последовательности, то есть численные значения которой образуют конечное или счетное множество.

29

Закон
распределения
дискретной
случайной
величины

Соответствие между значениями $x_1, x_2, \cdots $ дискретной случайной величины и их вероятностями $p_1, p_2, \cdots $ называется законом распределения и может быть задан таблично или аналитически { то есть с помощью формул } . Если ДСВ $X$ принимает конечное множество значений $x_1 ,x_2 ,x_3 ...$  соответственно с вероятностями $p_1 ,p_2 ,...,p_n $, то ее закон распределения  определяется формулами

$P(X=x_k )=p_k , ~k=1,2,...,n$ и $\sum\limits_ { k=1 } ^n { p_k =1 } $

Если ДСВ $X$ принимает бесконечную последовательность значений $x_1 ,x_2 ,x_3 ...$ соответственно с вероятностями $p_1 ,p_2 ,p_3 ,...$, то ее закон распределения определяется формулами

$P(X=x_k )=p_k, ~k=1,2,...,n$ и $\sum\limits_ { k=1 } ^\infty { p_k =1 } $

30

Понятие
непрерывной
случайной
величины { НСВ $X$ }

НСВ $X$ – случайная величина, которая может принимать любые значения из некоторого промежутка, то есть множество значений непрерывной случайной величины несчетно.

31

Функция
распределения. Свойства функции распределения

Функцией распределения случайной величины $X$ называется функция действительного переменного $x$, определяемая равенством $F(x)=P(X\lt x)$, где $P(X\lt x)$ - вероятность того, что случайная величина $X$ принимает значение, меньше $x$

Функция распределения $F(x)$ для ДСВ $X$, которая может принимать значения $x_1 ,x_2 ,...x_n $ c соответствующими вероятностями $p_1 ,p_2 ,...,p_n$  имеет вид $F(x)=\sum\limits_ { x_k \lt x } { P(X\lt x_k ) } $, где символ $x_k \lt x$ означает, что суммируются вероятности $p_k $ тех значений, которые меньше $x$.

Функция является разрывной.

Случайная величина $X$ называется непрерывной, если ее функция распределения $F(x)$ является непрерывно дифференцируемой.

Вероятность того, что СВХ примет значение из промежутка $\left[ { \alpha ;\beta }\right)$, равна разности значений ее функции распределения на концах этого полуинтервала:

$P(\alpha \leqslant X\lt \beta )=F(\beta )-F(\alpha )$

Свойства функции распределения

1. $0\leqslant F(x)\leqslant 1$ 

2. Если $x_1 \lt x_2 $, то $F(x_1 )\leqslant F(x_2 )$, то есть функция распределения является неубывающей.

 

31

Функция
распределения. Свойства функции распределения

3. Функция $F(x)$ в точке $x_0 $  непрерывна слева, то есть $\mathop { \lim } \limits_ { x\to x_0 -0 } F(x)=F(x_0 )$; $F(x_0 -0)=F(x_0 )$

4. Если все возможные значения  СВХ принадлежат интервалу $(a;b)$, то $F(x)=0$ при $x\leqslant a$, $F(x)=1$ при $x\geqslant b$ 

5. Если все возможные значения СВХ принадлежат бесконечному интервалу $\left( { -\infty ;+\infty }\right)$, то $\mathop { \lim } \limits_ { x\to -\infty } F(x)=0;\mathop { \lim } \limits_ { x\to +\infty } F(x)=1;$

Если $X$ – непрерывная случайная величина, то вероятность того, что она примет одно заданное определенное значение, равна нулю:

$P(X=\alpha )=0$

Отсюда следует, что для непрерывной случайной величины выполняются равенства:

$P(\alpha \lt X\lt \beta )=P(\alpha \leqslant X\leqslant \beta )=P(\alpha \leqslant X\lt \beta )=$

$=P(\alpha \lt X\leqslant \beta )=F(\beta )-F(\alpha )$

32

Плотность
распределения
вероятностей
непрерывной
случайной
величины.
Свойства функции плотности
распределения.

Плотностью распределения { дифференциальной функцией распределения } вероятностей НСВ $X$ в точке $x$ называют предел отношения вероятности попадания значений этой величины в интервал $\left( { x;x+\Delta x }\right)$ к длине $\Delta x$ этого интервала, когда последняя стремится к нулю:

$f(x)=\mathop { \lim } \limits_ { \Delta x\to 0 } \frac { P(x\lt X\lt x+\Delta x) } { \Delta x } $

Следовательно, $f(x)= { F } '(x)$, то есть плотность распределения есть первая производная от функции распределения НСВХ.

Вероятность того, что НСВХ примет значение, принадлежащее интервалу $(a;b)$, определяется равенством $P(a\lt X\lt b)=\int\limits_a^b { f(x)dx } $

32

Плотность
распределения
вероятностей
непрерывной
случайной
величины.
Свойства функции плотности
распределения.

Зная плотность распределения, можно найти функцию распределения $F(x)=\int\limits_ { -\infty } ^x { f(x)dx } $

Свойства функции плотности

1. Плотность распределения $f(x)$ - неотрицательная функция, то есть $f(x)\geqslant 0$ 

2. Несобственный интеграл по бесконечному промежутку $\left( { -\infty ;+\infty }\right)$ от функции плотности вероятностей равен единице: $\int\limits_ { -\infty } ^ { +\infty } { f(x)dx=1 } $

3. Если все возможные значения случайной величины принадлежат отрезку $\left[ { \alpha ;\beta }\right]$, то $\int\limits_\alpha ^\beta { f(x)dx=1 } $, так как вне этого промежутка $f(x)=0$

33

Математическое ожидание

Для ДСВ $X$ равно сумме произведений всех ее значений на соответствующие вероятности: $M(X)=\sum\limits_ { i=1 } ^n { x_i p_i } $

Для НСВ $X:\;M(X)=\int\limits_ { -\infty } ^ { +\infty } { xf(x)dx } $,

где $f(x)=F'(x)$ – функция плотности распределения вероятности.

34

Свойства
математического ожидания

1. $M(C)=C$, если $C=const,$

2. $M(CX)=CM(X),$

3. $M(X+Y)=M(X)+M(Y),$

4. Если $X$ и $Y$ – независимые случайные величины, то $M(XY)=M(X)\cdot M(Y)$

35

Дисперсия
случайной
величины

Разность $X-M(X)$ называется отклонением случайной величины $X$ от ее математического ожидания $M(X)=a$.

Математическое ожидание отклонения равно нулю: $M(X-a)=0$ 

Дисперсией, или рассеянием случайной величины $X$ называется математическое ожидание квадрата ее отклонения:

$D(X)=M((X-a)^2)$ Следовательно, для любой случайной величины $X:\;\;D(X)\geqslant 0$

36

Свойства
дисперсии

1. $D(C)=0$, $C=const,$

2. $D(CX)=C^2D(X)$, $C=const,$

3. Если случайные величины $X$ и $Y$ независимы, то $D(X\pm Y)=D(X)+D(Y),$

4. $D(XY)=D(X)\cdot D(Y),$ 

5. $D(X)=M(X^2)-(M(X))^2.$

37

Среднее
квадратическое
отклонение

Среднеквадратическим отклонением, или стандартным отклонением, случайной величины $X$ называется корень квадратный из ее дисперсии:

$\sigma (X)=\sqrt { D(X) } \Leftrightarrow D(X)=\sigma ^2.$

38

Биномиальное
распределение

Закон распределения дискретной случайной величины, определяемой формулой Бернулли

$p_k =P_n (k)=C_n^k \cdot p^k\cdot q^ { n-k } (k=0,1,2,...,n)$

называется биномиальным. Постоянные $n,~p$ называются параметрами биномиального распределения $\left( { q=1-p }\right)$.

$M(X)=np;\;D(X)=npq;\;\sigma (X)=\sqrt { npq } $

39

Распределение
Пуассона

Распределением Пуассона называется  распределение вероятностей дискретной случайной величины, определяемое формулой Пуассона $P_n (k)=\frac { a^ke^ { -a } } { k! } $, где $a=np$ – параметр распределения.

$M(X)=a;D(X)=a$

40

Равномерное распределение на интервале $\left( { a;b }\right)$

Если значения случайной величины, которые она принимает в конечном промежутке $(a;b)$, возможны в одинаковой степени, то плотность распределения вероятностей этой величины постоянна на данном промежутке и равна нулю вне этого промежутка, то есть

$f(x)=\left\{ { \begin{array} { l } C\;\mbox { на } \;\left[ { a,b }\right], \\ 0\;\mbox { вне } \;(a,b). \\ \end{array} }\right.$

Доказано, что $C=\frac { 1 } { b-a } .$ 

$M(X)=\frac { a+b } { 2 } ; ~ D(X)=\frac { (b-a)^2 } { 12 } ; ~ \sigma (X)=\frac { b-a } { 2\sqrt 3 } $

41

Геометрическое распределение

Геометрическим называется распределение дискретной случайной величины $X$, определяемое формулой

$P(X=m)=(1-p)^ { m-1 } \cdot p,$, где $0\lt p\lt 1$, и $m=1,2,3...$  { Вероятности образуют бесконечно убывающую геометрическую прогрессию со знаменателем $q=1-p$ } .

$M(X)=\frac { 1 } { p } ; ~ D(X)=\frac { 1-p } { p^2 } $

42

Показательное
распределение

Показательным называется распределение с плотностью вероятностей, определяемой по формуле  $f(x)=\left\{ { \begin{array} { l } 0\mbox { при } \;x\lt 0, \\ \lambda e^ { -\lambda x } \mbox { } \;\mbox { при } \;x\geqslant 0, \\ \end{array} }\right.$

где  $\lambda >0$ - параметр распределения.

$M(X)=\frac { 1 } { \lambda } ; ~ D(X)=\frac { 1 } { \lambda ^2 } \quad ; ~ \sigma (X)=\frac { 1 } { \lambda } .$ 

Замечание. Если $T$ – время безотказной работы элемента, $\lambda $ - интенсивность отказов, то случайная величина $T$ распределена по экспоненциальному закону с функцией распределения $F(t)=P(T\lt t)=1-e^ { -\lambda t } ,_ { } $ где $\lambda \gt 0$. $F(t)$ определяет вероятность отказа элемента за время $t$. Вероятность безотказной работы элемента за время $t$ равна $e^ { -\lambda t } $. Функция $R(t)=e^ { -\lambda t } $ называется функцией надежности.

43

Нормальное распределение $N(a;\sigma )$

Нормальным распределением, или распределением Гаусса, называется распределение с плотностью вероятностей 

$f(x)=\frac { 1 } { \sigma \sqrt { 2\pi } } e^ { \frac { -(x-a)^2 } { 2\sigma ^2 } } $

Постоянные $a$ и $\sigma \quad (\sigma \gt 0)$  называются параметрами нормального распределения.

$M(X)=a; ~ D(X)=\sigma ^2; ~ \sigma =\sqrt { D(X) } $

Вероятность попадания значений нормальной случайной величины $X$ в интервале $(\alpha ;\beta )$  определяется формулой

$P(\alpha \lt X\lt \beta )=\Phi (\frac { \beta -\alpha } { \sigma } )-\Phi (\frac { \alpha -a } { \sigma } ),$

где $\Phi (x)$ – функция Лапласа.

$M(X)=a; D(X)=\sigma ^2.$

44

Нормированное распределение $N(0;1)$

Нормированным или стандартным называется такое нормальное распределение непрерывной случайной величины, когда функция плотности вероятностей $f(x)=\frac { 1 } { \sqrt { 2\pi } } e^ { \frac { -x^2 } { 2 } } .$

$M(X)=a=0; ~ \sigma (X)=\sigma =1.$ 

45

Мода случайной величины $\overline M $

Модой ДСВ $X$ называется ее наиболее вероятное значение.

Модой НСВ $X$ называется то ее значение, при котором плотность распределения вероятностей максимальна.

46

Медиана $M_e $

Медианой непрерывной случайной величины $X$ называется такое ее значение $M_e $, для которого одинаково вероятно, окажется ли случайная величина меньше или больше $M_e $, то есть $P(x\lt M_e )=P(x>M_e )=0,5$.

Если прямая $x=a$ является осью симметрии кривой распределения $f(x)$, то

$\overline M =M_e =M(X)=a$.

47

Начальные
моменты $\nu _k $

Начальным моментом $\nu _k ~ k$ -го порядка случайной величины $X$ называется математическое ожидание $k$-ой степени этой случайной величины: $\nu _k =M(X^k)$.

Для ДСВ $X:_ { } \nu _k =\sum\limits_ { i=1 } ^n { x_i^k \cdot p_i } $,  где $\sum\limits_ { i=1 } ^\infty { p_i =1 } $.

Начальный момент $k$-го порядка НСВ $X$ с плотностью распределения $f(x)$ определяется формулой :

$\nu _k =\int\limits_ { -\infty } ^ { +\infty } { x^kf(x)dx } $,   где $\int\limits_ { -\infty } ^ { +\infty } { f(x)dx=1 } $.

48

Центральные моменты  $\mu _k $

Центральным моментом $\mu _k ~ k$-го порядка случайной величины $X$ называется математическое ожидание $k$-ой степени отклонения этой величины от ее математического ожидания. Если обозначить $M(X)=a$, то $\mu _k =M((X-a)^k)$ 

Для ДСВ $X: \quad \mu _k =\sum\limits_ { i=1 } ^n { (x_i -a)^k\cdot p_i } $,

если множество этой величины конечно, а если – счетно, то $\mu _k =\sum\limits_ { i=1 } ^\infty { (x_i -a)^k\cdot p_i } .$

Для НСВ $X$ с плотностью распределения $f(x)$ центральный момент $k$-го порядка определяется формулой: $\mu _k =\int\limits_ { -\infty } ^ { +\infty } { (x_i -a)^k\cdot f(x)dx } .$

49

Некоторые
свойства
начальных
и центральных
моментов

$\nu _0 =1;~ \nu _1 =M(X),$ 

$\mu _0 =1;~ \mu _1 =0;~ ~ \mu _2 =D\left( X \right),$

$\mu _2 =\nu _2 -\nu _1^2 ,$

$\mu _3 =\nu _3 -3\nu _1 \nu _2 +2\nu _1^3 ,$

$\mu _4 =\nu _4 -4\nu _1 \nu _3 +6\nu _1^2 \nu _2 -3\nu _1^4 .$

50

Асимметрия

Отношение центрального момента 3-го порядка к кубу среднеквадратического отклонения случайной величины называется асимметрией: $A(X)=\frac { \mu _3 } { \sigma ^3 } $.

Если распределение случайной величины симметрично относительно ее математического ожидания, то асимметрия равна нулю.

51

Эксцесс

Эксцессом случайной величины называется величина $Э_x =\frac { \mu _4 } { \sigma ^4 } -3.$

Для нормального распределения $Э_x =0$.

Кривые, более островершинные по сравнению с нормальной кривой Гаусса, имеют $Э_x \gt 0$.
У более плосковершинных кривых $Э_x \lt 0.$

Далее:

Нахождение потенциала

Вычисление тройного интеграла. Теорема о переходе от тройного интеграла к повторному

Вычисление поверхностного интеграла второго рода

Свойства потока векторного поля

Критерий полноты {формулировка}. Лемма о немонотонной функции

Теорема об аналоге СДНФ в Pk

Критерий полноты {теорема Поста о функциональной полноте}

Вычисление криволинейного интеграла второго рода в случае выполнения условия независимости от формы

Формула Грина

Функции k-значной логики. Элементарные функции. Лемма об аналоге правила де Моргана

Переход от двойного интеграла к повторному. Изменение порядка интегрирования. Переход к полярным координатам

Вычисление двойного интеграла

Теорема о заведомо полныx системаx

Вычисление криволинейного интеграла первого рода. Примеры

Несобственные интегралы по неограниченной области

Огравление $\Rightarrow $