Независимые события. Теорема умножения

Опр Событие А называется независимым от события В, если вероятность появления события А не зависит от того, произошло событие В или нет.

Свойство независимости взаимно.

Теорема Если случайные события независимы, то вероятность их совмещения есть

$ P( {AB} )=P( A )\cdot P( B ) $

Опр Несколько событий называются попарно-независимыми, если каждые два из них независимы.

Замечание Если события А и В - независимы, то независимы так же события $\overline A$ и $B$ , $A$ и $\overline B$, $\overline A$ и $\overline B $.

Опр Группа событий - $A_1 A_2 \ldots A_n $ называется независимой в совокупности, если любые события этой группы не зависят от произведения любого числа оставшихся $P( {A_1 ,A_2 ,\ldots A_n } )=P( {A_1 } )\cdot P( {A_2 } )\cdot \ldots \cdot P( {A_n } )$

Замечание Понятие о независимости и о несовместности - близки, но это не одно и тоже. Несовместные события $A\cap B=\emptyset $будут независимы, если $P( A )\ne 0$ и $P( B )\ne 0$

Пример: Вероятность того, что студент сдаст первый экзамен, равна 0,9, второй - 0,9, третий - 0.8. Найти вероятность того, что студент сдаст все три экзамена.

Решение. Введем события:

$A_1 =${студент сдаст 1 - й экзамен},

$A_2 =${студент сдаст 2 - й экзамен},

$A_3 =${студент сдаст 3 - й экзамен},

$B =${студент сдаст все три экзамена}.

Учитывая, что события $A_1 ,A_2 ,A_3 $ независимы получим $B=A_1 \cdot A_2 \cdot A_3 $. Вероятность того, что студент сдаст все три экзамена, найдем как вероятность независимых событий $ P(B)=P(A_1 \cdot A_2 \cdot A_3 )=P(A_1 )\cdot P(A_2 )\cdot P(A_3 )=0,9\cdot 0,9\cdot 0,8=0,648. $